5 research outputs found

    Comparative analysis of tools to predict rapid progression in autosomal dominant polycystic kidney disease

    Get PDF
    Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and shows a wide phenotype. Only patients with rapid progression (RP) are included in clinical trials or are approved to receive disease-modifying drugs. This study aims at comparing different available predictive tools in ADPKD with the Mayo classification (MC) identification of rapid progressors based on high total kidney volume (TKV) according to age. Methods: A total of 164 ADPKD patients were recruited retrospectively from a single centre. The performance of diverse tools to identify RP defined as being in MC categories 1C-1E was assessed. Results: A total of 118 patients were MC 1C-1E. The algorithm developed by the European Renal Association-European Dialysis and Transplant Association Working Group on Inherited Kidney Disorders/European Renal Best Practice had a low sensitivity in identifying MC 1C-1E. The sensitivity and specificity of TKV to predict RP depend on the cut-off used. A kidney length of >16.5 cm before age 45 years has high specificity but low sensitivity. Assessing the MC by ultrasonography had high levels of agreement with magnetic resonance imaging (MRI) data, especially for 1A, 1D and 1E. The estimated glomerular filtration rate (eGFR) decline was very sensitive but had low specificity. In contrast, the Predicting Renal Outcome in Polycystic Kidney Disease (PROPKD) score was very specific but had poor sensitivity. Having hypertension before 35 years of age is a good clinical predictor of MC 1C-1E. Family history can be of help in suggesting RP, but by itself it lacks sufficient sensitivity and specificity. Conclusions: The MC by ultrasonography could be an option in hospitals with limited access to MRI as it performs well generally, and especially at the extremes of the MC, i.e. classes 1A, 1D and 1E. The eGFR decline is sensitive but not very specific when compared with the MC, whereas the PROPKD score is very specific but has low sensitivity. Integrating the different tools currently available to determine RP should facilitate the identification of rapid progressors among patients with ADPKD

    Comparative analysis of tools to predict rapid progression in autosomal dominant polycystic kidney disease.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and shows a wide phenotype. Only patients with rapid progression (RP) are included in clinical trials or are approved to receive disease-modifying drugs. This study aims at comparing different available predictive tools in ADPKD with the Mayo classification (MC) identification of rapid progressors based on high total kidney volume (TKV) according to age. A total of 164 ADPKD patients were recruited retrospectively from a single centre. The performance of diverse tools to identify RP defined as being in MC categories 1C-1E was assessed. A total of 118 patients were MC 1C-1E. The algorithm developed by the European Renal Association-European Dialysis and Transplant Association Working Group on Inherited Kidney Disorders/European Renal Best Practice had a low sensitivity in identifying MC 1C-1E. The sensitivity and specificity of TKV to predict RP depend on the cut-off used. A kidney length of >16.5 cm before age 45 years has high specificity but low sensitivity. Assessing the MC by ultrasonography had high levels of agreement with magnetic resonance imaging (MRI) data, especially for 1A, 1D and 1E. The estimated glomerular filtration rate (eGFR) decline was very sensitive but had low specificity. In contrast, the Predicting Renal Outcome in Polycystic Kidney Disease (PROPKD) score was very specific but had poor sensitivity. Having hypertension before 35 years of age is a good clinical predictor of MC 1C-1E. Family history can be of help in suggesting RP, but by itself it lacks sufficient sensitivity and specificity. The MC by ultrasonography could be an option in hospitals with limited access to MRI as it performs well generally, and especially at the extremes of the MC, i.e. classes 1A, 1D and 1E. The eGFR decline is sensitive but not very specific when compared with the MC, whereas the PROPKD score is very specific but has low sensitivity. Integrating the different tools currently available to determine RP should facilitate the identification of rapid progressors among patients with ADPKD

    Gestational diabetes impacts fetal precursor cell responses with potential consequences for offspring

    No full text
    Fetal programming has been proposed as a key mechanism underlying the association between intrauterine exposure to maternal diabetes and negative health outcomes in offspring. To determine whether gestational diabetes mellitus (GDM) might leave an imprint in fetal precursors of the amniotic membrane and whether it might be related to adverse outcomes in offspring, a prospective case-control study was conducted, in which amniotic mesenchymal stem cells (AMSCs) and resident macrophages were isolated from pregnant patients, with either GDM or normal glucose tolerance, scheduled for cesarean section. After characterization, functional characteristics of AMSCs were analyzed and correlated with anthropometrical and clinical variables from both mother and offspring. GDM-derived AMSCs displayed an impaired proliferation and osteogenic potential when compared with control cells, accompanied by superior invasive and chemotactic capacity. The expression of genes involved in the inflammatory response (TNFα, MCP-1, CD40, and CTSS) was upregulated in GDM-derived AMSCs, whereas anti-inflammatory IL-33 was downregulated. Macrophages isolated from the amniotic membrane of GDM mothers consistently showed higher expression of MCP-1 as well. In vitro studies in which AMSCs from healthy control women were exposed to hyperglycemia, hyperinsulinemia, and palmitic acid confirmed these results. Finally, genes involved in the inflammatory response were associated with maternal insulin sensitivity and prepregnancy body mass index, as well as with fetal metabolic parameters. These results suggest that the GDM environment could program stem cells and subsequently favor metabolic dysfunction later in life. Fetal adaptive programming in the setting of GDM might have a direct negative impact on insulin resistance of offspring

    Clinical and genetic characterization of a cohort of proteinuric patients with biallelic CUBN variants

    No full text
    International audienceABSTRACT Background Proteinuria is a well-known risk factor for progressive kidney impairment. Recently, C-terminal cubilin (CUBN) variants have been associated with isolated proteinuria without progression of kidney disease. Methods Genetic testing of 347 families with proteinuria of suspected monogenic cause was performed by next-generation sequencing of a custom-designed kidney disease gene panel. Families with CUBN biallelic proteinuria-causing variants were studied at the clinical, genetic, laboratory and pathologic levels. Results Twelve families (15 patients) bearing homozygous or compound heterozygous proteinuria-causing variants in the C-terminal CUBN gene were identified, representing 3.5% of the total cohort. We identified 14 different sequence variants, five of which were novel. The median age at diagnosis of proteinuria was 4 years (range 9 months to 44 years), and in most cases proteinuria was detected incidentally. Thirteen patients had moderate to severe proteinuria at diagnosis without nephrotic syndrome. These patients showed lack of response to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, normal kidney biopsy and preservation of normal kidney function over time. The two remaining patients presented a more severe phenotype, likely caused by associated comorbidities. Conclusions Identification of C-terminal pathogenic CUBN variants is diagnostic of an entity characterized by glomerular proteinuria, normal kidney histology and lack of response to ACEi/ARB treatment. This study adds evidence and increases awareness about albuminuria caused by C-terminal variants in the CUBN gene, which is a benign condition usually diagnosed in childhood with preserved renal function until adulthood
    corecore